Check for
Updates

Online Scheduling in Modular Multimedia Systems with
Stream Reuse’

Michael K. Bradshaw, Jim Kurose, Prashant Shenoy, Don Towsley
Dept. of Computer Science
University of Massachusetts
Ambherst, MA 01003
{bradshaw, kurose, shenoy,towsley } @cs.umass.edu

ABSTRACT

When properly constructed, a modular multimedia system can sat-
isfy a client’s request in multiple ways by using different sequences
of modules and by reusing existing streams within the system. Such
flexibility in a multimedia server or proxy can provide a rich set of
services to clients while efficiently utilizing system resources by
choosing the best way to schedule (i.e. allocate resources for) new
clients. However, it is difficult to optimally schedule clients in an
online fashion as the problem is NP-complete. In this paper, we
provide an efficient online algorithm to schedule client requests us-
ing a modular multimedia platform.

Categories and Subject Descriptors: C.4: Design Studies
General Terms: Algorithms, Design, Measurement
Keywords: Modular, Multimedia, Resource-Conserving

1. INTRODUCTION

The growing popularity of streaming media places an increas-
ing strain on both network and server resources. Streaming media
requires large amounts of network and disk bandwidth to success-
fully transmit streams from a server or proxy to the client. The
most common solution is to simply purchase more resources. For
instance, replicating servers and proxies in the Internet can increase
both network and disk bandwidth [1, 6]. For every system there
exists some workload that will completely consume one of the re-
sources. In many of these cases, one set of resources can be substi-
tuted for another set of resources. For example, a multimedia proxy
caches streams in memory to conserve network bandwidth [19, 17].
The proxy adapts to the workload by exploiting resources that are
not constrained. Many systems also employ this technique [3, 2, 8,
16]. In all existing work, the system’s ability to adapt to resource
contention is explicitly designed for a particular problem and is not
generalized to generic resources types.

*This material is based on work supported by the National Science
Foundation under Grant Nos. ANI-0085848 and EIA-0080119.
Any opinions, findings conclusions or recommendations expressed
in this material are those of the authors and do not necessarily re-
flect the views of the National Science Foundation.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

NOSSDAV’05, June 13-14, 2005, Stevenson, Washington, USA.

Copyright 2005 ACM 1-58113-987-X/05/0006 ...$5.00.

195

Modular multimedia systems are well-suited to provide resource
conserving services due to their flexibility. Stream modules are
used to implement each stream operation in the system. A module
that reads a stream from the network and one that sends a stream
into the network are two examples of stream modules. In order to
use multiple modules in series, pipes are used to redirect the output
stream of one module to serve as the input stream of another mod-
ule. A sequence of modules is called a pipeline. In order to react
to fluctuations in resource consumption, a system [18] can use a
lookup table to determine which pipeline should be used based on
available resources. To avoid programming an exponential number
of services (for each combination of modules), some systems [14,
15, 11] automate the construction of pipelines as requests arrive to
the system. While Ninja [10] does choose modules (actually nodes
offering a service) based on the lowest CPU load, no modular mul-
timedia system characterizes all of the resources used to determine
the best way to satisfy a request.

AMPS [20] is a modular multimedia platform capable of shar-
ing streams between clients. To enable sharing, pipes dynamically
branch the output stream to serve as an input stream to other mod-
ules. Branching allows the system to reuse the stream generated by
previously instantiated modules to service multiple requests. In our
earlier work [4], we introduced a Graph Manager (GM) as a com-
ponent of AMPS that composes modules online to satisfy requests.
The GM selected a pipeline to satisfy each request by examining
the set of resources needed by that pipeline and resources avail-
able in the system. Finding an optimal solution is NP-complete [5]
(via reduction to the Interval Classroom Assignment problem [7]).
To find good solutions at online speeds, we restricted how streams
were shared between clients. That restriction allowed the GM to
generate solutions quickly enough to support online scheduling.

In this paper, we provide a significant improvement in the GM’s
ability to schedule the system’s resources to satisfy client requests.
First, we formalize the problem of optimally scheduling an arriv-
ing client. Second, we present an exact search algorithm based on
guided search to find the optimal schedule, and offer approxima-
tion techniques that enable the GM to efficiently schedule online.
Finally, our results show that the GM can schedule a client very
quickly, taking on average 40 ms per client, in the presence of 3600
concurrent clients. Furthermore, we present the resource savings
realized by reusing existing streams to satisfy future clients.

The rest of the paper is structured as follows. In Section 2 we
review the capabilities of the AMPS system. Then, we formulate
the optimization problem based on the AMPS architecture in Sec-
tion 3. In Section 4 we solve the optimization problem and provide
the approximations needed to speed up the execution time. Next,
we describe the evaluation environment in Section 5 and the exper-
iments in Section 6. Finally, we conclude the paper in Section 7.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1065983.1066027&domain=pdf&date_stamp=2005-06-13

Possible Pipelines
@W—>w—
read from network @——)@——)

first client arrives(a)
@W—@—
read from network ._9@——)

branch existing \II\EI:: —>(I\I‘I}r >

stream
second client arrives(c)

Scheduled Pipelines

@%@—) first client

first client is scheduled(b)
second client

@r@—>

@-) second client

(prefix)

read from disk

read from disk . ;
first client

second client is scheduled(d)

Figurel: AMPS Capabilities: A modular multimedia platform
with support for stream reuse

2. MODULAR MULTIMEDIA PLATFORM

AMPS [20] is a modular multimedia platform designed for rapid
prototyping. AMPS has two components of interest to us: stream
modules and pipes. Stream modules encode each stream service
offered by the system such as: a transcoding service, a transmis-
sion service, or a service that generates added content. In order to
use multiple modules in series, pipes are used to direct the output
stream of one module to serve as the input stream of another mod-
ule. By passing a stream through a sequence of stream modules,
connected by pipes, the system can create a new service in the form
of a pipeline. In this system, pipes can also dynamically branch the
output stream to serve as an input stream to more than one module.
Branching allows the system, typically a server or proxy, to reuse
the stream generated by previously instantiated modules to service
multiple requests.

Because of AMPS’s modularity and branching, the system can
satisfy requests by using different sequences of modules and by
branching already scheduled pipelines. We present an example of
AMPS’s capabilities in Figure 1. Imagine a proxy with 3 modules:
a Network Transmission (NT) module that sends a stream into the
network, a Network Reception (NR) module that reads a stream
from the network and a Memory Loader (ML) module that reads
a stream from disk. When the first request arrives at the system
(Figure 1(a)), the request can be satisfied in one of two ways. The
proxy can read the stream from disk and send it to the network
(ML and NT), or the proxy can read the stream from the network
and send it to the network (NR and NT). Suppose the proxy chooses
to read the stream from disk (Figure 1(b)). When a second request
arrives later (Figure 1(c)), there are 3 possible pipelines; the two
previously mentioned and the pipeline that branches the previously
scheduled pipeline to satisfy the suffix of the stream. Note that
the prefix has already been generated and cannot be shared. In
this case, the branched pipeline is chosen to satisfy the suffix of
the stream, and a second pipeline is generated to supply the prefix
(Figure 1(d)). We assume that the client can receive more than
one stream at a time and can buffer frames (small portions of the
stream) that arrive early.

The AMPS system has a scheduler called the Graph Manager
(GM) that determines the best way to satisfy requests. The GM’s
name comes from the graph-like appearance of the stream mod-
ules and pipes used to satisfy requests. The GM’s task can be
divided into two subtasks. First, the GM must find all possible
pipelines that can be used, wholly or partially, to satisfy a new re-
quest, as seen in previous work [4]. Second, the GM must choose
which pipeline or combination of pipelines to use in satisfying a

196

request. When multiple pipelines can be used to satisfy a request,
the system can use resources more efficiently, but scheduling mul-
tiple pipelines is much more complex. Our contribution focuses on
the second subtask, namely that of determining which pipelines to
schedule for each request.

3. OPTIMIZATION PROBLEM

In this section we present an optimization problem that arises
in the AMPS system when a request arrives. The problem assumes
that the system has served clients in the past and is concerned with
minimizing the cost to the system of an arrival regardless of future
arrivals. Note that a solution to the optimization problem may not
lead to a “globally” optimal solution that accounts for all future
client requests. However, in a real system, knowledge of future
requests is not usually known.

In the rest of this section, we develop the full optimization prob-
lem in two steps. First, the simplified problem ignores some de-
tails/abilities of the AMPS system, but it provides the intuition for
the heuristic driven search introduced in Section 4.1.2. Second, the
full problem captures all of the abilities of the AMPS system. In
particular, it models the GM’s ability to schedule multiple portions
of the stream at the same time.

3.1 Simplified Problem

A request v is a 3-tuple (b, e, t) that describes the deadline by
which the GM must produce each frame. The GM must schedule
all frames between v.b and v.e. The first frame v.b must be sent
by the deadline v.t. All remaining frames z,v.b < z < v.e have
deadlines v.t + (z — v.b).

In the simplified problem, the GM must decide how to satisfy
the request when all frames are produced at their deadlines. Time
is slotted. Each slot represents an interval of time, and each slot
is indexed by an integer. Denote current time by ¢,. The system
has k limited resources that are consumed when the GM gener-
ates a frame. A resource can be the bandwidth or the memory that
is available to the system. Let R(t) = (Ri(t),..., Rx(t));0 <
R;(t) < 1 represent the utilization of each of the k resources at
time ¢. When we discuss resources, we always talk about what per-
centage of the total resources is used. For this reason, the system’s
resources R(t) = (Ri(t), ..., Ry(t)) attime ¢ are real values that
lie between 0 and 1. The amount of resources available varies over
time since the GM can experience different request rates, different
types of requests, or choose to satisfy similar requests in different
ways.

A stream segment is a potential, partial solution that has been
generated by the GM. The choice of which modules to use (pipeline)
and whether or not to make use of an existing stream are abstracted
away (see previous work [4]). A stream segment s is a 4-tuple
(b, e, t,7) that describes a stream that could be scheduled by the
GM. The stream segment sequentially produces frames s.b to s.e.
The stream segment produces each frame z, s.b < = < s.e, attime
st+ (z —s.b). s.F = (sr1,...,51%);0 < s.ry is the vector
of the k resources consumed to generate each frame in this stream
segment. The values of s.r;, 1 < i < k represent what fraction
of the system’s i" resource is needed. When s.r; > 1 the stream
segment requires more resources than are present in the system.

S is the set of all stream segments the system can produce to
satisfy a request v. All members of S only generate frames at the
deadlines specified in the request v. Note that a particular stream
segment might not contain all frames in a request due to branching
of ongoing streams.

FullSearch(p]], c1,x)
1 §:=8
2 Removealla € S’ from S’

3 if (x < a.b) or (a.e > x)

4 while (S’ not Empty)

5 choose s € S’ such that V¢ s/

6 c(R(s.t — (x — 8.b) + s5.7) <
7 c(R(a.t — (x — a.b) + a.r)
8 Remove s from S’

9 plz] :=s

10 if((pl)) + b)) <)

11 if (x=v.e)

12 e = f(p])

13 else FullSearch(pl[], ¢;, = + 1)

Figure 2: Full Search Algorithm

The cost function ¢ : [0,1]* — R U {co} maps a vector of
resource utilizations, ¥ = (r1,72...7%; 0 < r;), to a real number
(or infinity if unsatisfiable). The cost function is:

c() = { Zf:1 7”1'2

o

The cost function is the sum of the squares of the resource utiliza-
tions. The cost function is convex and increases faster than the
resource utilization as the utilization approaches one. This cost
increase discourages the GM from selecting stream segments that
require heavily utilized resources and to instead favor stream seg-
ments that consume underutilized resources. If any of the resource
utilizations is greater than one, the cost is oo and indicates that the
system does not have the resources needed to satisfy the request.

The best solution not only satisfies the constraints of the request
but also has the lowest sum of the marginal costs for each time slot.
The optimization problem is to create a mapping P : = — s for
each frame z,v.b < z < v.e, to a stream segment s € S that will
generate that frame so as to minimize:

TiSI
r; > 1

ifVici<k
if ngigk

)

F(P,R(),t0) = 6
SR+ Y I(t=st+ (x—s.b))sF) — c(H(t)
t=tg (x,s)€P

where I() equals 1 if the argument is true and 0 otherwise. Note
that not all stream segments can satisfy each frame in the request.
The lowest cost schedule could use multiple stream segments to
satisfy the request.

Since no two frames in the request are generated at the same
time, the optimization problem can be restated to minimize:

FPR)) = Y e(Blst + (z — s.b)) + s.7)

(z,s)eP

©)

Equation (3) is used in the heuristic driven search presented in Sec-
tion 4.1.2.

3.2 Full Problem

The full problem is based on the simplified problem. In the full
problem, we relax the constraint that forces all members of S to
generate frames at their delivery deadlines. As a consequence, the
full problem requires that we minimize Equation (2) to find the
optimal solution.

197

4. ALGORITHMIC SOLUTIONS

In this section we present the algorithms to solve the optimiza-
tion problem in Section 3.2. First, we design an optimal algorithm
to solve the optimization problem. While this algorithm will always
find a solution, we show in Section 6 that it is not able to schedule
solutions quickly enough to be used in real-time. Then to speed
up the algorithm, we introduce two approximation techniques that
reduce the search space and reduce the calculation times.

4.1 Exact Algorithms

We build our exact algorithm by first defining a search algorithm
for the simplified problem. We then use this search algorithm as a
heuristic to guide the search for the solution to the full problem.

4.1.1 Simplified Search Algorithm

The simplified problem can be solved in a straightforward man-
ner. Each mapping of a frame to a stream segment can be solved
independently of the other frames see Equation (3). To map frame
x to a stream segment, the GM searches through all stream seg-

ments and chooses the segment s with the lowest cost c(R(s.t +
(x —s.b)) +s.7);8.b<z<s.e.

4.1.2 Full Search Algorithm

The full problem is more difficult to solve in that the cost to
generate a frame depends on how many other frames are generated
during the same time slot. In essence the cost of a solution cannot
be calculated until each frame in the request has been mapped to a
stream segment. A full enumeration and evaluation of all possible
mappings is not tractable. Instead, the GM must utilize a guided
search to find a solution.

We use a greedy search inspired by A* [12] to quickly search
for the best solutions. A* search is a breadth-first, guided search
algorithm that is guaranteed to find an optimal solution. Unlike
A™, our algorithm uses depth-first search to conserve memory. Our
A* inspired algorithm has three components, an incremental search
space, a non-decreasing cost function f() and a heuristic func-
tion (). The GM sequentially decides each frame-stream segment
mapping starting at the first frame v.b and ending at the last frame
v.e. This forms the incremental search space. f(p[]) is the non-
decreasing cost function where p[] represents the array of all the
stream segments that have been assigned to frames. This cost func-
tion can be calculated by summing the costs, c(), incurred in each
time slot from time to to v.t + (v.e — v.b). The heuristic func-
tion h(z) is the cost of the solution found by the simplified search
algorithm for request v’ = (z + 1,v.e,v.t + (x + 1 — v.b)). In
other words, the heuristic function sums the lowest cost mapping
for all non-assigned frames without considering that two frames
could be generated in the same time slot. If two frames are gener-
ated at the same time, the total cost would be greater than if they
were produced separately. Recall that the cost function ¢() sums
the square of each resource’s utilization. Therefore, if we assume
that no frames were generated at the same time, we can produce an
estimate that will never exceed the true cost.

The psuedocode for the FullSearch algorithm is located in
Figure 2. The GM picks the stream segment that can generate frame
x with the lowest cost, ignoring any possible interactions with other
frames (lines[5-7]). If the cost of the satisfied frames f(p[]) plus
the heuristic cost h(x) to satisfy the rest of the frames is less than
the lowest cost ¢; (line 10), the GM recursively solves for the next
frame (line 13). Otherwise, the GM selects the next lowest cost
stream segment (line 4). When there are no more stream segments
available, the GM backtracks and repeats the process with the pre-
vious frame.

4.2 Approximating Frame Space
(Frame-Buckets)

The FullsSearch algorithm does not take advantage of the fact
that the best stream segment to generate frame z is very likely the
best frame to service frame = + 1. To exploit this trend, the frames
of the requested video are grouped into frame-buckets. Instead of
choosing a stream segment for each frame as in the exact algorithm,
we now select a stream segment for each frame-bucket. Since the
stream segment must satisfy all frames within a bucket, the algo-
rithm only considers stream segments that can satisfy each frame in
the bucket. By reducing the number of choices, the GM can more
quickly come to a decision although not the greedy optimal one.

In this paper we examine two different bucketing algorithms.
Equal spaced (Equi-spaced) buckets have an equal number n of
frames in each bucket. Geometric spaced (Geo-spaced) buckets
have m times more frames in each successive bucket, where m
is a constant. For example an Equi-spaced bucketing algorithm
with n = 4 would place 4 frames in each frame-bucket, while a
Geo-spaced bucketing algorithm with m = 2 would fill the first
4 buckets with 1,2, 4, 8 frames respectively. We will examine the
effectiveness of both techniques in Section 6.1.

4.3 Approximating Resource Utilization
(Time-Buckets)

In the exact algorithm, calculation of the values f() and h() de-
pends on E(t). This means that the GM must calculate the cost
for each value of ¢. To avoid recalculating f() and h() for each
value of ¢, we use an enveloping technique [9] to represent resource
utilization for larger periods of time. Time-slots are grouped into
time-buckets in much the same manner as frames were grouped into
frame-buckets in Section 4.2. For each time-bucket covering time-
slots ¢ t0 £o, define B’ () = (max Ry (t)... max Ry (t)); Vi, <t<ts
as the maximum resource utilization during all of the time-slots
within the bounds of the time-bucket. Since '(t) has the same
value for multiple values of ¢, values of 4() and f() do not need to
be recalculated for each time-slot but rather for each bucket.

5. EVALUATION ENVIRONMENT

The GM is a scheduler for AMPS, a modular multimedia plat-
form with stream reuse. To be effective, the GM must quickly
schedule clients and provide the schedule to the system. The GM
only needs to be fast enough to maintain the maximum throughput
of the system without interfering with the system’s performance.
We use a simulation environment to determine if the GM can meet
these requirements and discover any resource savings that the GM
can offer. The GM is configured to operate as the scheduler for a
forwarding proxy, the streams are not actually sent, but resource
utilization is recorded. The set of stream segments S is generated
as detailed in previous work [4]. The GM accepts requests from
the simulator and returns a schedule for each request. The GM
must schedule all portions of the stream by the playback time, but
the GM may schedule portions of the stream before their playback
time.

The proxy has three stream modules: a network reception mod-
ule that receives streams, a network transmission module that sends
streams out, and a time shifting module that can buffer streams in
memory until their playback time. The proxy also has 3 resources:
memory, which is used by all three modules, server bandwidth,
which is used by the network reception module (between the server
and the proxy), and client bandwidth, which is used by the net-
work transmission module (between the proxy and the client). The
proxy has the average amount of each resource needed by a sim-

198

ple forwarding proxy to satisfy all requests. A simple forwarding
proxy fetches each stream and forwards the stream to each request-
ing client. Note that with this amount of resources, it is unlikely that
the simple forwarding proxy could service every arrival, as there is
some irregularity in the arrival process.

We make use of two simulator settings: Clip and Movie. In
the Clip Setting, the simulator generates requests for a single two
minute video clip. In the Movie Setting, the simulator generates
requests for a single one hour video. In both settings, the simulator
generates requests using a Poisson arrival process with a mean of
one request per second. The simulation is conducted for 4 times
the length of the video type requested in order to reach steady state.
Steady state occurs soon after the simulation has run for the length
of the video. It is at this point that the system has (on average)
a constant number of clients. All experiments were conducted on
a Condor cluster with machines ranging from 2.4 GHz to 3 GHz
processors.

6. EXPERIMENTS

We ran preliminary experiments to evaluate the performance of
the exact search algorithm. We found that 5% of the searches re-
quired more than 10 hours to schedule a request (searches were pre-
maturely halted in order to continue the simulation). Further inves-
tigation showed that the scheduling problem is NP-complete via a
reduction to the Interval Classroom Assignment problem [7]). De-
tails of these experiments can be found in the technical report [5].
The rest of this section evaluates the approximations needed to
make the scheduling problem tractable. Furthermore, to avoid cor-
ner cases, the GM only evaluates a maximum of 1000 schedules
before choosing the best one visited.

6.1 Evaluating Approximations

After examining the baseline behavior, the need for approxima-
tion is apparent. In this section we conduct a series of experiments
to determine how well the approximations listed in Sections 4.2
and 4.3 perform. The results of each experiment are averages of
10 runs. Time- and frame-buckets are either Equi-spaced or Geo-
spaced buckets. When using Equi-spaced buckets, we will report
the size of the bucket in seconds. Frame-buckets contain frames but
only one frame is generated each second. When using Geo-spaced
buckets, the first bucket is 1 second (frame) long. Each additional
bucket is m times the size of the last bucket. So for a value of
m = 2, the next three buckets would be 2,4 and 8 seconds long
respectively. We carefully chose values of m to insure that the sum
of the frames in each bucket equals the number of frames in the
Clip video.

6.1.1 Approximations over 2 minute clips

The first experiment examines the behavior of using Equi-spaced
time- and frame-buckets under the Clip setting. The size of the
buckets range from 1 second to 120 seconds, the size of the re-
quested stream. The achieved throughputs are recorded in Table 1
and the execution times are recorded in Table 2. This experiment
exhibits several interesting results. First, we note that when the
frame-bucket is 120s long the proxy behaves like a simple forward-
ing proxy that can only request streams from the server and relay
them to the client. Because of natural fluctuations in the arrival pro-
cess, 100% throughput is not possible and only 90.42% of requests
are satisfied.

Second, when the time- and frame-buckets are 1s long, the ap-
proximation is the closest to the exact solution. The throughput
is significantly less than that of a simple forwarding proxy. We
examined the solutions generated by the search algorithm and dis-

Frame Buckets Time Buckets

1s 10s | 20s | 40s | 60s | 120s

1s 759 | 747 | 675 | .618 | 572 | .774

10s 908 | .909 | .792 | .729 | .693 | .702

20s 1906 | .905 | .906 | .801 | .716 | .691

40s 905 | .905 | .905 | .906 | .877 | .741

60s 1905 | .905 | .905 | .905 | .905 | .832

120s 904 | 904 | .904 | .904 | .904 | .904

Table 1: Throughput achieved by using Equi-spaced buckets

Frame Buckets Time Buckets

1s 10s | 20s | 40s | 60s | 120s

1s 8130 | 221 | 989 | 484 | 219 | 224

10s 314 | 15.0 | 146 | 105 | 858 | 7.22

20s 457 | 959 | 8.93 | 7.47 | 6.05 | 3.80

40s 376 | 862 | 781 | 751|511 | 254

60s 36.4 | 9.01 | 9.66 | 9.01 | 9.18 | 3.67

120s 234 | 6.18 | 551 | 534 | 6.25 | 6.10

Table 2: Execution timein msusing Equi-spaced buckets

covered two trends. One, the solutions were composed of many
small stream segments each 1-2 frames long. Two, many of these
stream segments (sometimes as many as seven) were scheduled in
the same time slot. Recall that the cost c() is quadratic. The cost
to generate two frames in the same time slot is greater than the cost
to generate the frames in separate time slots. The search algorithm
schedules frames in the same time slot only when the cost savings
is greater than the cost penalty. In practice, the search algorithm
finds a smaller increase in cost to schedule short stream segments
compared to the savings gained from branching the stream. By
scheduling frames at the same time, the proxy experiences short
transient spikes in the resource utilization. These spikes in resource
utilization only span 1-2 seconds. When the spike reaches 100%
utilization, the proxy cannot schedule any streams during that time
period. This shows that the greedy solution is not optimal for the
global scheduling problem.

Third, when the frame-buckets are smaller than the time-buckets,
the throughput is poor. When the frame-buckets are as long as or
longer than the time-buckets, we see throughput that matches or
exceeds the throughput of the simple forwarding proxy. The greater
throughput is due to the algorithm taking advantage of small dips
in the resource utilization to schedule streams ahead of time. The
proxy satisfies that client more quickly and is able to satisfy the
next client as those resources are freed. However, this event occurs
rarely and does not significantly improve the throughput.

Last, the execution time to find a solution decreases as the size
of the buckets increase. Larger time-buckets decrease the execu-
tion time to calculate values of i() and f(). Larger frame-buckets
reduce the search space and thus make the search easier. Frame-
buckets also produce a feedback effect. Each stream segment sched-
uled by the algorithm can be branched and reused to satisfy a later
request. Fewer stream segments are scheduled when larger frame-
buckets are used, and fewer choices are available in the future. This
breaks down when the time-buckets are 120s long, in particular
with 1s long frame-buckets. Since the time-bucket (only one) is the
size of the stream, the system is using the peak resources utiliza-
tion for the calculations of i(). As a consequence, the heuristic cost
to produce a frame for any branched stream segment is the same.

199

Bucket Size | 5m | 10m | 15m | 20m | 30m | 60 m
Segments 12 6 4 3 2 1
Throughput | .983 | .982 | .982 | .983 | .982 | .982
Exec. Time | 823 | 445 362 308 | 313 | 445

Table 3: Movie setting using Equi-spaced time- and frame-
buckets, measured in minutes

Multiplier | 1.447 | 1.975 | 4925 | 7.48 | 14.98 | 59.5
Segments 20 12 6 5 4 3
Throughput | .983 | .983 | .983 | .982 | .982 | .981
Exec. Time | 433.7 | 265 127 | 91.3 | 373 | 16.0

Table 4: Movie setting using Geo-spaced time- and frame-
buckets

Since the costs are identical the guided search is not able to discard
any of them, and the GM must evaluate each of them. In general,
the approximations decrease the running time of the search.

We conducted similar experiments using Geo-spaced buckets un-
der a Clip setting. The results are similar to the Equi-spaced re-
sults. When the frame-buckets are smaller than the time-buckets
we see poor throughput. When the frame-buckets are as long as
or longer than the time-buckets, we see throughput that matches or
exceeds the throughput of the simple forwarding proxy. The ex-
ecution times when using the Geo-spaced buckets decrease as the
size of the buckets increases. However, there is a (small) speedup
when using Geo-spaced buckets over Equi-spaced buckets in the
Clip setting.

6.1.2 Approximations over 1 hour movies

Our next pair of experiments measure the throughput and execu-
tion times of longer streams. We conduct each experiment using the
Movie setting. In the first experiment, we examine the performance
of using Equi-spaced time- and frame-buckets. In the second exper-
iment we examine the performance of using Geo-spaced time- and
frame-buckets. For both experiments the time- and frame-bucket
are the same length, and the parameters are only reported once.
The results of using Equi-spaced buckets are presented in Table 3.
The throughput achieved by a simple forwarding proxy is 98.28%.
We see this throughput when the time- and frame-buckets are both
60 minutes long. The throughput for other bucket sizes are similar,
but the execution time decreases for larger buckets (except for the
60 min buckets). The results from using Geo-spaced buckets are
presented in Table 4. The throughput is similar to the throughput
achieved using Equi-spaced buckets. However, the execution times
experienced when using Geo-spaced buckets are up to an order of
magnitude lower than using Equi-spaced buckets.

6.2 Effectively Using Resources

In this section, we report the average resource consumption using
the Clip setting for each of the three resources: client bandwidth,
server bandwidth and memory. For each experiment, we provide
the average resource consumption per time-bucket. The size of
each bucket is determined by the bucketing technique used and the
parameter used. Due to space constraints we only present data on
the server bandwidth utilized. See [5] for the utilization of other re-
sources. The server bandwidths consumed using Equi-spaced and
Geo-spaced buckets are shown in Figure 3. In reading these graphs
the most important data is the utilization of the first bucket. In all
graphs the resource utilization drops off after the first bucket and

Average peak Resources: Server Equi-spaced

0.35 ¢ : . . .

. 10s —+—
0.3 20s -~
0.25 | 40s -

0.2 N
0.15
0.1
0.05
0

Average Resource Consumption

Bucket Slot
(a) Equi-spaced Buckets of Length n

Average Peak Resource: Server Geo-spaced

c

£ 035 . T T T

g 1.533 ——

> 03f 2.39 X

§ 025 Fx A -

o 023 *N 10.6 —-m—

o W=y Tk

& 0.1 \\\ o) % N .

& o005 RN §

§ 0 L o m ke wk —

X 1 3 5 7 9 11 13
Bucket Slot

(b) Geo-spaced Buckets with Parameter m

Figure 3: Average Peak Resource Utilization of Server Bandwidth Using I dentically Sized Time- and Frame-Buckets

the utilization of the first bucket limits the ability to service new re-
quests. When using Equi-spaced buckets (Figure 3(a)), the resource
utilization decreases when smaller buckets are used. When using
Geo-spaced buckets (Figure 3(b)), we observe the opposite trend.
The resource consumption decreases when larger buckets are used.
Geo-spaced buckets provide a double win since using larger buck-
ets decreases both the resources consumed and the execution times
needed to satisfy a request.

7. DISCUSSION

Given any system that preforms one action (such as reading a file
from disk) with a static workload, we are confident that a skilled
team of programmers can develop the software necessary to meet
that challenge. However, the GM is useful for any multimedia sys-
tem that exhibits one or more of the following traits: 1) contains a
large set of stream modules in which multiple sequences can sat-
isfy the same request; 2) concurrently provides a stream to multi-
ple clients using different services and different starting times; 3)
offers a large and changing set of services; and/or 4) is resource-
constrained. When there are multiple sequences of stream modules
that can satisfy a request, the GM can determine which is best,
given the present resource usage. When a server or proxy must
serve the same stream, but offer different services and different
starting times to different clients, the GM determines those por-
tions of existing streams that can be reused, by buffering within the
system or by providing more than one stream to the client. When a
system needs to offer a large and changing set of services, the GM
can help the system avoid recompilation. The GM determines the
best way to use new modules in coordination with old modules to
satisfy requests. This ability avoids costly rewrites when new mod-
ules become available. When resources are constrained, the GM
can determine how to utilize resources to service more requests.

For any benefit, we can expect to pay a cost. The time required
to schedule streams using the GM is likely to be higher than the
time needed for a straightforward system. In this paper we pro-
vided measurements to determine the speed with which the GM
can schedule and have found the cost per client to be low, on the
order of 10s of milliseconds for hour long streams with an aver-
age of 3600 simultaneous clients. Recall that each stream used to
serve the existing 3600 clients must be evaluated to determine if
they can be reused for the new client. Workloads with less sharing
require less processing. But, is 3600 clients at reasonable limit?
The AMPS proxy [20] supported a maximum of 710 clients us-
ing 300k streams using a 2 GHz processor. Performance studies
of Microsoft and RealNetworks servers [13] exhibited maximum

200

throughput rates for 500k streams well under 1000 simultaneous
clients using dual 700 MHz processors. Since these experiments
were conducted on different servers and under different conditions
they cannot be compared directly, but used to illustrate arrival rates
that entry level multimedia servers can support. The overhead of
using the GM on these systems is minimal, but offers the dual ben-
efits of providing more services and more efficient use of resources.

8. REFERENCES

[1] S. Acharyaand B. Smith. Middleman: A video caching proxy server. In Proc of
NOSSDAV, 2000.
J. M. Almeida, D. L. Eager, and M. K. Vernon. A hybrid caching strategy for
streaming media files. In Proc. of MMCN, January 2001.
E. Amir, S. McCanne, and H. Zhang. An application level video gateway. In
Proc. ACM Multimedia, November 1995.
M. K. Bradshaw, J. Kurose, L. J. Page, P. Shenoy, and D. Towsley. A
reconfigurable, on-the-fly, resource-aware,streaming pipeline scheduler. In
Proc. of MMCN, January 2005.
M. K. Bradshaw, J. Kurose, P. Shenoy, and D. Towsley. Online scheduling in
modular multimedia systems with stream reuse. Technical Report 05-21,
Department of Computer Science, University of Massachusetts Amherst, 2005.
D. W. Brubeck and L. A. Rowe. Hierarchical storage management in a
distributed vod system. IEEE MultiMedia, 3(3):37-47, 1996.
M. W. Carter and C. A. Tovey. When is the classroom assignment problem
hard? Oper. Res., 40(S1):28-39, 1992.
A. Dan and D. Sitaram. A generalized interval caching policy for mixed
interactive and long video environments. In Proc. of MMCN, 1996.
V. Firoiu, D. Towsley, and J. Kurose. Efficient admission control for edf
schedulers. In Proc. IEEE INFOCOM, April 1997.
S. D. Gribble and et al. The ninja architecture for robust internet-scale systems
and services. Journal of Computer Networks, 35(4), March 2001.
GStreamer Team. GStreamer: open source multimedia framework.
http://www.gstreamer.net.
P. E. Hart, N. J. Nilsson, and B. Raphael. A formal basis for the heuristic
determiniation of minimum cost paths. IEEE Transactions on Systems Science
and Cybernetics, pages 100-107, 1968.
KeyLabs. Helix universal server from realnetworks comparative load test, May
2002. www.keylabs.com.
Z. M. Mao, H. sheung Wilson So, and B. Kang. Network support for mobile
multimedia using a self-adaptive distributed proxy. In Proc of NOSSDAV, 2001.
Microsoft Inc. Directshow. http://msdn.microsoft.com.
G. J. M. Smit et al. Reconfiguration in mobile multimedia systems. In Proc. of
PROGRESS workshop, October 2000.
Z. Miao and A. Ortega. Proxy caching for efficient video services over the
internet. In Packet Video Workshop, April 1999.
E. J. Posnak, H. M. Vin, and R. G. Lavender. Presentation processing support
for adaptive multimedia applications. In Proc. of MMCN, January 1996.
R. Rejaie, M. Handley, H. Yu, and D. Estrin. Proxy caching mechanism for
multimedia playback streams in the internet. In Proc. of the 4th International
Web Caching Workshop, March 1999.
X. Zhang and et al. AMPS: A flexible, scalable proxy testbed for implementing
streaming services. In Proc of NOSSDAV, Kinsale Ireland, June 2004.

[2
31
(41

(5]

6]
(71
(8]
[°]
[10]
[11]

[12]

[13]
[14]

[15]
[16]

[17]
[18]

[19]

[20]

